Sensor Fusion and Tracking Toolbox ${ }^{\text {Tn }}$

Getting Started Guide
®

MATLAB $^{\circ} \&$ SIMULINK $^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:
The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Sensor Fusion and Tracking Toolbox ${ }^{\text {mM }}$ Getting Started Guide
© COPYRIGHT 2018-2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www. mathworks. com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.
Revision History

September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021

Online only
Online only
Online only Online only Online only Online only Online only

New for Version 1.0 (Release 2018b)
Revised for Version 1.1 (Release 2019a)
Revised for Version 1.2 (Release 2019b)
Revised for Version 1.3 (Release 2020a)
Revised for Version 2.0 (Release 2020b)
Revised for Version 2.1 (Release 2021a)
Revised for Version 2.2 (Release 2021b)

Introduction
1
Sensor Fusion and Tracking Toolbox Product Description 1-2

Inertial Sensor Models
2
Model IMU, GPS, and INS/GPS . 2-2
Inertial Measurement Unit . 2-2
Global Positioning System . 2 2-4
Inertial Navigation System and Global Positioning System $\quad \mathbf{2 - 6}$

Orientation
3
Determine Orientation Using Inertial Sensors
3-2

Spatial Representation
4
Orientation, Position, and Coordinate Convention . 4-2
Orientation . 4-2
Frame Rotation . 4-3
Position . 4 -5
Pose and Trajectory . 4-6

Pose
5
Determine Pose Using Inertial Sensors and GPS . 5 5-2
Fuse Inertial Sensor and GPS data . 5-2
6
Tracking Simulation Overview 6-2
Creating a Tracking Scenario 6-4
Radar Detections
7
Simulate Radar Detections 7-2
Create Radar Sensor 7-2
Detector Input 7-8
Radar Sensor Coordinate Systems 7-10
INS 7-12
Detections 7-12
Multi-Object Tracking
8
Tracking and Tracking Filters 8-2
Multi-Object Tracking 8-2
Multi-Object Tracker Properties 8-3

Introduction

Sensor Fusion and Tracking Toolbox Product Description Design, simulate, and test multisensor tracking and positioning systems

Sensor Fusion and Tracking Toolbox includes algorithms and tools for designing, simulating, and testing systems that fuse data from multiple sensors to maintain situational awareness and localization. Reference examples provide a starting point for multi-object tracking and sensor fusion development for surveillance and autonomous systems, including airborne, spaceborne, groundbased, shipborne, and underwater systems.

You can fuse data from real-world sensors, including active and passive radar, sonar, lidar, EO/IR, IMU, and GPS. You can also generate synthetic data from virtual sensors to test your algorithms under different scenarios. The toolbox includes multi-object trackers and estimation filters for evaluating architectures that combine grid-level, detection-level, and object- or track-level fusion. It also provides metrics, including OSPA and GOSPA, for validating performance against ground truth scenes.

For simulation acceleration or rapid prototyping, the toolbox supports C code generation.

Inertial Sensor Models

Model IMU, GPS, and INS/GPS

Sensor Fusion and Tracking Toolbox enables you to model inertial measurement units (IMU), Global Positioning Systems (GPS), and inertial navigation systems (INS). You can model specific hardware by setting properties of your models to values from hardware datasheets. You can tune environmental and noise properties to mimic real-world environments. You can use these models to test and validate your fusion algorithms or as placeholders while developing larger applications.

This tutorial provides an overview of inertial sensor and GPS models in Sensor Fusion and Tracking Toolbox.

To learn how to generate the ground-truth motion that drives the sensor models, see waypointTrajectory and kinematicTrajectory. For a tutorial on fusing inertial sensor data, see "Determine Orientation Using Inertial Sensors" on page 3-2.

Inertial Measurement Unit

An IMU is an electronic device mounted on a platform. The IMU consists of individual sensors that report various information about the platform's motion. IMUs combine multiple sensors, which can include accelerometers, gyroscopes, and magnetometers.

With this toolbox, measurements returned from an IMU model use the following unit and coordinate conventions.

Output	Description	Units	Coordinate System
Acceleration	Current accelerometer reading	$\mathrm{m} / \mathrm{s}^{2}$	Sensor Body

Output	Description	Units	Coordinate System
Angular velocity	Current gyroscope reading	$\mathrm{rad} / \mathrm{s}$	Sensor Body
Magnetic field	Current magnetometer reading	$\mu \mathrm{T}$	Sensor Body

Usually, the data returned by IMUs is fused together and interpreted as roll, pitch, and yaw of the platform. Real-world IMU sensors can have different axes for each of the individual sensors. The models provided by Sensor Fusion and Tracking Toolbox assume that the individual sensor axes are aligned.

IMU Model

To create an IMU sensor model, use the imuSensor System object ${ }^{\mathrm{TM}}$.

```
IMU = imuSensor
IMU =
```

 imuSensor with properties:
    ```
            IMUType: 'accel-gyro'
        SampleRate: 100
        Temperature: 25
        Accelerometer: [1×1 accelparams]
            Gyroscope: [1×1 gyroparams]
        RandomStream: 'Global stream'
```

The default IMU model contains an ideal accelerometer and an ideal gyroscope. The accelparams and gyroparams objects define the accelerometer and gyroscope configuration. You can set the properties of these objects to mimic specific hardware and environments. For more information on IMU parameter objects, see accelparams, gyroparams, and magparams.

To model receiving IMU sensor data, call the IMU model with the ground-truth acceleration and angular velocity of the platform:

```
trueAcceleration = [1 0 0];
trueAngularVelocity = [ll 0 0];
[accelerometerReadings,gyroscopeReadings] = IMU(trueAcceleration,trueAngularVelocity)
accelerometerReadings =
    -1.0000 0 9.8100
gyroscopeReadings =
    1 0 0
```

You can generate the ground-truth trajectories that you input to the IMU model using kinematicTrajectory and waypointTrajectory.

Global Positioning System

A global positioning system (GPS) provides 3-D position information for platforms (receivers) on the surface of the Earth.

GPS consists of a constellation of satellites that continuously orbit the earth. The satellites maintain a configuration such that a platform is always within view of at least four satellites. By measuring the flight time of signals from the satellites to the platform, the position of the platform can be
trilaterated. Satellites timestamp a broadcast signal, which is compared to the platform's clock upon receipt. Three satellites are required to trilaterate a position in three dimensions. The fourth satellite is required to correct for clock synchronization errors between the platform and satellites.

The GPS simulation provided by Sensor Fusion and Tracking Toolbox models the platform (receiver) data that has already been processed and interpreted as altitude, latitude, longitude, velocity, groundspeed, and course.

Measurements returned from the GPS model use the following unit and coordinate conventions.

| Output | Description | Units | Coordinate System |
| :--- | :--- | :--- | :--- |
| LLA | Current global position
 reading in geodetic
 coordinates, based on
 wgs84Ellipsoid Earth
 model | degrees (latitude),
 degrees (longitude),
 meters (altitude) | LLA |
| Velocity | Current velocity reading
 from GPS | m / s | local NED |
| Groundspeed | Current groundspeed
 reading from GPS | m / s | local NED |
| Course | Current course reading
 from GPS | degrees | local NED |

The GPS model enables you to set high-level accuracy and noise parameters, as well as the receiver update rate and a reference location.

To create a GPS model, use the gpsSensor System object.

```
GPS = gpsSensor
GPS =
    gpsSensor with properties:
```

UpdateRate: 1
ReferenceLocation: [0 0 0]
HorizontalPositionAccuracy: 1.6 VerticalPositionAccuracy:

VelocityAccuracy: 0.1
RandomStream: 'Global stream'
DecayFactor: 0.999

Hz

 [deg deg m]m
m
m / s

To model receiving GPS sensor data, call the GPS model with the ground-truth position and velocity of the platform:

```
truePosition = [1 0 0];
trueVelocity = [1 0 0];
[LLA,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)
LLA =
    0.0000 0.0000 0.3031
velocity =
    1.0919 -0.0008 -0.1308
groundspeed =
    1.0919
course =
```

 359.9566
 You can generate the ground-truth trajectories that you input to the GPS model using kinematicTrajectory and waypointTrajectory.

Inertial Navigation System and Global Positioning System

An inertial navigation system (INS) uses inertial sensors like those found on an IMU: accelerometers, gyroscopes, and magnetometers. An INS fuses the inertial sensor data to calculate position, orientation, and velocity of a platform. An INS/GPS uses GPS data to correct the INS. Typically, the INS and GPS readings are fused with an extended Kalman filter, where the INS readings are used in the prediction step, and the GPS readings are used in the update step. A common use for INS/GPS is dead-reckoning when the GPS signal is unreliable.
"INS/GPS" refers to the entire system, including the filtering. The INS/GPS simulation provided by Sensor Fusion and Tracking Toolbox models an INS/GPS and returns the position, velocity, and orientation reported by the inertial sensors and GPS receiver based on a ground-truth motion.

Measurements returned from the INS/GPS use the following unit and coordinate conventions.

| Output | Description | Units | Coordinate System |
| :--- | :--- | :--- | :--- |
| Position | Current position
 reading from the
 INS/GPS | meters | local NED |
| Velocity | Current velocity reading
 from the INS/GPS | m / s | local NED |
| Orientation | Current orientation
 reading from the
 INS/GPS | quaternion or rotation
 matrix | N/A |

To create a INS/GPS model, use the insSensor System object. You can model a real-world INS/GPS system by tuning the accuracy of your fused data: roll, pitch, yaw, position, and velocity.

```
INS = insSensor
INS =
    insSensor with properties:
        RollAccuracy: 0.2 deg
        PitchAccuracy: 0.2 deg
            YawAccuracy: 1 deg
        PositionAccuracy: 1 m
        VelocityAccuracy: 0.05 m/s
            RandomStream: 'Global stream'
```

To model receiving INS/GPS sensor data, call the INS/GPS model with the ground-truth position and velocity and orientation of the platform:

```
trueMotion = struct( ...
        'Position',[0 0 0], ...
        'Velocity',[0 0 0], ...
        'Orientation',quaternion(1,0,0,0));
measurement = INS(trueMotion)
measurement =
    struct with fields:
        Orientation: [1×1 quaternion]
        Position: [0.2939 -0.7873 0.8884]
        Velocity: [-0.0574 -0.0534 -0.0405]
```


See Also

imuSensor|gpsSensor|insSensor

More About

- "Introduction to Simulating IMU Measurements"
- "Inertial Sensor Noise Analysis Using Allan Variance"

External Websites

- https://www.gps.gov/systems/gps/

Orientation

Determine Orientation Using Inertial Sensors

Sensor Fusion and Tracking Toolbox enables you to fuse data read from an inertial measurement unit (IMU) to estimate orientation and angular velocity:

- ecompass -- Fuse accelerometer and magnetometer readings
- imufilter -- Fuse accelerometer and gyroscope readings
- ahrsfilter -- Fuse accelerometer, gyroscope, and magnetometer readings

More sensors on an IMU result in a more robust orientation estimation. The sensor data can be crossvalidated, and the information the sensors convey is orthogonal.

This tutorial provides an overview of inertial sensor fusion for IMUs in Sensor Fusion and Tracking Toolbox.

To learn how to model inertial sensors and GPS, see "Model IMU, GPS, and INS/GPS" on page 2-2. To learn how to generate the ground-truth motion that drives sensor models, see waypointTrajectory and kinematicTrajectory.

You can also fuse IMU readings with GPS readings to estimate pose. See "Determine Pose Using Inertial Sensors and GPS" on page 5-2 for an overview.

Estimate Orientation Through Inertial Sensor Fusion

This example shows how to use 6 -axis and 9 -axis fusion algorithms to compute orientation. There are several algorithms to compute orientation from inertial measurement units (IMUs) and magneticangular rate-gravity (MARG) units. This example covers the basics of orientation and how to use these algorithms.

Orientation

An object's orientation describes its rotation relative to some coordinate system, sometimes called a parent coordinate system, in three dimensions.

For the following algorithms, the fixed, parent coordinate system used is North-East-Down (NED). NED is sometimes referred to as the global coordinate system or reference frame. In the NED reference frame, the X -axis points north, the Y -axis points east, and the Z-axis points downward. The X-Y plane of NED is considered to be the local tangent plane of the Earth. Depending on the algorithm, north may be either magnetic north or true north. The algorithms in this example use magnetic north.

If specified, the following algorithms can estimate orientation relative to East-North-Up (ENU) parent coordinate system instead of NED.

An object can be thought of as having its own coordinate system, often called the local or child coordinate system. This child coordinate system rotates with the object relative to the parent coordinate system. If there is no translation, the origins of both coordinate systems overlap.

The orientation quantity computed is a rotation that takes quantities from the parent reference frame to the child reference frame. The rotation is represented by a quaternion or rotation matrix.

Types of Sensors

For orientation estimation, three types of sensors are commonly used: accelerometers, gyroscopes and magnetometers. Accelerometers measure proper acceleration. Gyroscopes measure angular velocity. Magnetometers measure the local magnetic field. Different algorithms are used to fuse different combinations of sensors to estimate orientation.

Sensor Data

Through most of this example, the same set of sensor data is used. Accelerometer, gyroscope, and magnetometer sensor data was recorded while a device rotated around three different axes: first around its local Y-axis, then around its Z-axis, and finally around its X-axis. The device's X-axis was generally pointed southward for the duration of the experiment.

```
ld = load('rpy_9axis.mat');
acc = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;
pp = poseplot;
```


Accelerometer-Magnetometer Fusion

The ecompass function fuses accelerometer and magnetometer data. This is a memoryless algorithm that requires no parameter tuning, but the algorithm is highly susceptible to sensor noise.

```
qe = ecompass(acc, mag);
for ii=1:size(acc,1)
    set(pp, "Orientation", qe(ii))
    drawnow limitrate
end
```


Note that the ecompass algorithm correctly finds the location of north. However, because the function is memoryless, the estimated motion is not smooth. The algorithm could be used as an initialization step in an orientation filter or some of the techniques presented in the "Lowpass Filter Orientation Using Quaternion SLERP" could be used to smooth the motion.

Accelerometer-Gyroscope Fusion

The following objects estimate orientation using either an error-state Kalman filter or a complementary filter. The error-state Kalman filter is the standard estimation filter and allows for many different aspects of the system to be tuned using the corresponding noise parameters. The complementary filter can be used as a substitute for systems with memory constraints, and has minimal tunable parameters, which allows for easier configuration at the cost of finer tuning.

The imufilter and complementaryFilter System objects ${ }^{\text {TM }}$ fuse accelerometer and gyroscope data. The imufilter uses an internal error-state Kalman filter and the complementaryFilter uses a complementary filter. The filters are capable of removing the gyroscope's bias noise, which drifts over time.

```
ifilt = imufilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
    qimu = ifilt(acc(ii,:), gyro(ii,:));
    set(pp, "Orientation", qimu)
    drawnow limitrate
end
```



```
% Disable magnetometer input.
cfilt = complementaryFilter('SampleRate', ld.Fs, 'HasMagnetometer', false);
for ii=1:size(acc,1)
    qimu = cfilt(acc(ii,:), gyro(ii,:));
    set(pp, "Orientation", qimu)
    drawnow limitrate
end
```


Although the imufilter and complementaryFilter algorithms produce significantly smoother estimates of the motion, compared to the ecompass, they do not correctly estimate the direction of north. The imufilter does not process magnetometer data, so it simply assumes the device's X-axis is initially pointing northward. The motion estimate given by imufilter is relative to the initial estimated orientation. The complementaryFilter makes the same assumption when the HasMagnetometer property is set to false.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consists of a 9-axis system that uses an accelerometer, gyroscope, and magnetometer to compute orientation. The ahrsfilter and complementaryFilter System objects ${ }^{\mathrm{TM}}$ combine the best of the previous algorithms to produce a smoothly changing estimate of the device orientation, while correctly estimating the direction of north. The complementaryFilter uses the same complementary filter algorithm as before, with an extra step to include the magnetometer and improve the orientation estimate. Like imufilter, ahrsfilter algorithm also uses an error-state Kalman filter. In addition to gyroscope bias removal, the ahrsfilter has some ability to detect and reject mild magnetic jamming.

```
ifilt = ahrsfilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
    qahrs = ifilt(acc(ii,:), gyro(ii,:), mag(ii,:));
    set(pp, "Orientation", qahrs)
    drawnow limitrate
end
```



```
cfilt = complementaryFilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
    qahrs = cfilt(acc(ii,:), gyro(ii,:), mag(ii,:));
    set(pp, "Orientation", qahrs)
    drawnow limitrate
end
```


Tuning Filter Parameters

The complementaryFilter, imufilter, and ahrsfilter System objects ${ }^{\mathrm{TM}}$ all have tunable parameters. Tuning the parameters based on the specified sensors being used can improve performance.

The complementaryFilter parameters AccelerometerGain and MagnetometerGain can be tuned to change the amount each sensor's measurements impact the orientation estimate. When AccelerometerGain is set to 0 , only the gyroscope is used for the x - and y -axis orientation. When AccelerometerGain is set to 1 , only the accelerometer is used for the x - and y-axis orientation. When MagnetometerGain is set to 0 , only the gyroscope is used for the z-axis orientation. When MagnetometerGain is set to 1 , only the magnetometer is used for the z -axis orientation.

The ahrsfilter and imufilter System objects ${ }^{\text {TM }}$ have more parameters that can allow the filters to more closely match specific hardware sensors. The environment of the sensor is also important to take into account. The imufilter parameters are a subset of the ahrsfilter parameters. The AccelerometerNoise, GyroscopeNoise, MagnetometerNoise, and GyroscopeDriftNoise are measurement noises. The sensors' datasheets help determine those values.

The LinearAccelerationNoise and LinearAccelerationDecayFactor govern the filter's response to linear (translational) acceleration. Shaking a device is a simple example of adding linear acceleration.

Consider how an imufilter with a LinearAccelerationNoise of $9 \mathrm{e}-3\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2}$ responds to a shaking trajectory, compared to one with a LinearAccelerationNoise of $9 \mathrm{e}-4\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2}$.

```
ld = load('shakingDevice.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
highVarFilt = imufilter('SampleRate', ld.Fs, ...
    'LinearAccelerationNoise', 0.009);
qHighLANoise = highVarFilt(accel, gyro);
lowVarFilt = imufilter('SampleRate', ld.Fs, ...
    'LinearAccelerationNoise', 0.0009);
qLowLANoise = lowVarFilt(accel, gyro);
```

One way to see the effect of the LinearAccelerationNoise is to look at the output gravity vector. The gravity vector is simply the third column of the orientation rotation matrix.

```
rmatHigh = rotmat(qHighLANoise, 'frame');
rmatLow = rotmat(qLowLANoise, 'frame');
gravDistHigh = sqrt(sum( (rmatHigh(:,3,:) - [0;0;1]).^2, 1));
gravDistLow = sqrt(sum( (rmatLow(:,3,:) - [0;0;1]).^2, 1));
figure;
plot([squeeze(gravDistHigh), squeeze(gravDistLow)]);
title('Euclidean Distance to Gravity');
legend('LinearAccelerationNoise = 0.009', ...
    'LinearAccelerationNoise = 0.0009');
```

Euclidean Distance to Gravity

The lowVarFilt has a low LinearAccelerationNoise, so it expects to be in an environment with low linear acceleration. Therefore, it is more susceptible to linear acceleration, as illustrated by the large variations earlier in the plot. However, because it expects to be in an environment with a low linear acceleration, higher trust is placed in the accelerometer signal. As such, the orientation estimate converges quickly back to vertical once the shaking has ended. The converse is true for highVarFilt. The filter is less affected by shaking, but the orientation estimate takes longer to converge to vertical when the shaking has stopped.

The MagneticDisturbanceNoise property enables modeling magnetic disturbances (nongeomagnetic noise sources) in much the same way LinearAccelerationNoise models linear acceleration.

The two decay factor properties (MagneticDisturbanceDecayFactor and LinearAccelerationDecayFactor) model the rate of variation of the noises. For slowly varying noise sources, set these parameters to a value closer to 1 . For quickly varying, uncorrelated noises, set these parameters closer to 0 . A lower LinearAccelerationDecayFactor enables the orientation estimate to find "down" more quickly. A lower MagneticDisturbanceDecayFactor enables the orientation estimate to find north more quickly.

Very large, short magnetic disturbances are rejected almost entirely by the ahrsfilter. Consider a pulse of [0 2500] uT applied while recording from a stationary sensor. Ideally, there should be no change in orientation estimate.

```
ld = load('magJamming.mat');
hpulse = ahrsfilter('SampleRate', ld.Fs);
len = 1:10000;
qpulse = hpulse(ld.sensorData.Acceleration(len,:), ...
    ld.sensorData.AngularVelocity(len,:), ...
    ld.sensorData.MagneticField(len,:));
figure;
timevec = 0:ld.Fs:(ld.Fs*numel(qpulse) - 1);
plot( timevec, eulerd(qpulse, 'ZYX', 'frame') );
title(['Stationary Trajectory Orientation Euler Angles' newline ...
    'Magnetic Jamming Response']);
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');
xlabel('Seconds');
```


Note that the filter almost totally rejects this magnetic pulse as interference. Any magnetic field strength greater than four times the ExpectedMagneticFieldStrength is considered a jamming source and the magnetometer signal is ignored for those samples.

Conclusion

The algorithms presented here, when properly tuned, enable estimation of orientation and are robust against environmental noise sources. It is important to consider the situations in which the sensors are used and tune the filters accordingly.

See Also

imuSensor|ecompass|imufilter|ahrsfilter|insfilter

More About

- "IMU and GPS Fusion for Inertial Navigation"
- "Estimate Position and Orientation of a Ground Vehicle"
- "Estimate Orientation and Height Using IMU, Magnetometer, and Altimeter"

Orientation, Position, and Coordinate Convention

The Sensor Fusion and Tracking Toolbox enables you to track orientation, position, pose, and trajectory of a platform. A platform refers generally to any object you want to track its state.

Orientation

Orientation is defined by angular displacement. Orientation can be described in terms of point or frame rotation. In point rotation, the coordinate system is static and the point moves. In frame rotation, the point is static and the coordinate system moves. For a given axis and angle of rotation, point rotation and frame rotation define equivalent angular displacement but in opposite directions.

Sensor Fusion and Tracking Toolbox defaults to frame rotation.

In frame representation, orientation is defined as rotation that takes the parent frame to the child frame. The choice of parent and child frames depends on the problem being solved. For example, when you manipulate the mounting of a sensor on a platform, you can select the platform body frame as the parent frame and select the sensor mounting frame as the child frame. The rotation from the platform body frame to the sensor mounting frame defines the orientation of the sensor with respect to the platform.

Sensor Fusion and Tracking Toolbox primarily supports the NED (north-east-down) coordinate frame. You can also use the ENU (east-north-up) coordinate frame in many features. In a few functions and objects (such as geoTrajectory and gpsSensor), you need to use the ECEF (Earth-Centered-EarthFixed) frame and geodetic coordinates of latitude, longitude, and altitude. For details of ECEF and geodetic coordinates, see "Coordinate Frames in Geo Trajectory".

Ground Reference Frame

NED

ENU

Frame Rotation

To relate one orientation to another you must rotate a frame. The table summarizes the z - y -x rotation conventions. You can also use other conventions, such as the $\mathrm{z}-\mathrm{x}-\mathrm{z}$ rotation convention. See the rotation sequence (RS) argument of quaternion for more details on these conventions.

| Variable | Euler Angle | Symbol | Output Interval
 (Degrees) |
| :--- | :--- | :--- | :--- |
| z | Yaw | ψ | $-180 \leq \psi<180$ |
| y | Pitch | θ | $-90 \leq \theta \leq 90$ |
| x | Roll | ϕ | $-180 \leq \phi<180$ |

A positive rotation angle corresponds to a clockwise rotation about an axis when viewing from the origin along the positive direction of the axis. The right-hand convention is equivalent, where positive
rotation is indicated by the direction in which the fingers on your right hand curl when your thumb is pointing in the direction of the axis of rotation.

To define three-dimensional frame rotation, you must rotate sequentially about the axes. Sensor Fusion and Tracking Toolbox uses intrinsic (carried frame) rotation, in which, after each rotation, the axis is updated before the next rotation. For example, to rotate an axis using the $z-y-x$ convention:

1 Rotate the parent frame about the z-axis to yield a new set of axes, $\left(x^{\prime}, y^{\prime}, z\right)$, where the x - and y axes have changed to x^{\prime} - and y^{\prime}-axes and the z-axis remains unchanged.

2 Rotate the new set of axes about the y^{\prime}-axis, yielding another new set of axes, ($\left.x^{\prime \prime}, y^{\prime}, z^{\prime}\right)$.
3 Rotate this new set of axes about the $x^{\prime \prime}$-axis, arriving at the desired child frame, ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$).

This sequence of rotations follows the convention outlined in [1]. The rotation matrix required to convert a vector in the parent frame to a vector in the child frame for a given yaw, pitch, and roll is computed as:

For features that support frame-based processing, Sensor Fusion and Tracking Toolbox provides coordinates as an N-by- 3 matrix, where N is the number of samples in time and the three columns correspond to the $x-, y$-, and z-axes. The following calculation rotates a parent frame to a child frame:
where $a_{\text {parent }}$ represents a N-by- 3 matrix of coordinates expressed in the parent coordinate frame and $a_{\text {child }}$ is the resulting N-by- 3 matrix of coordinates expressed in the child frame.

Sensor Fusion and Tracking Toolbox enables efficient orientation computation using the quaternion data type. To create a rotation matrix using quaternions, use the rotmat function.

Express Gravitational Vector in Body Frame

In an NED frame, the gravitational vector can be express as

```
gNED = [0 0 9.8]; % m/s^2
```

Consider a body frame obtained by a consecutive rotation of 20 degrees in yaw, 5 degrees in pitch, and 10 degrees in roll from the parent NED frame.

```
yaw = 20; % degree
pitch = 5; % degree
roll = 10; % degree
```

To obtain the expression of the gravitational vector in the body frame, you first obtain the quaternion corresponding to the three consecutive Euler angles.

```
q = quaternion([yaw pitch roll],"eulerd","zyx","frame");
```

Then, using the rotateframe object function, you can obtain the coordinates of the gravitational vector in the body frame as

```
gBody = rotateframe(q,gNED)
gBody = 1\times3
    -0.8541 1.6953 9.6144
```

Alternately, you can obtain the coordinates using rotation matrix. First, you use the rotmat object function of quaternion to obtain the corresponding rotation matrix that transforms coordinates from the NED frame to the body frame.

R = rotmat(q,"frame");
Then, obtain the coordinates of the gravitational vector in the body frame as

```
gBody2 = (R*gNED')'
gBody2 = 1\times3
    -0.8541 1.6953 9.6144
```


Position

Position is defined as the translational distance from a parent frame origin to a child frame origin. For example, take the local NED coordinate system as the parent frame. In the NED coordinate system:

- The origin is arbitrarily fixed to a point on the surface of the Earth. This makes the NED coordinate system local.
- The x-axis points toward the ellipsoid north.
- The y-axis points toward the ellipsoid east.
- The z-axis points downward along the ellipsoid normal (geodetic latitude, ρ).

Azimuth and Elevation

Given a vector in \mathbf{R}^{3} :

- Azimuth is defined as the angle from the x-axis to the orthogonal projection of the vector onto the $x y$-plane. The angle is positive going from the x-axis toward the y-axis. Azimuth is given in degrees in the range [-180, 180).
- Elevation is defined as the angle from the projection onto the $x y$-plane to the vector. The angle is positive going from the $x y$-plane to the z-axis. Elevation is given in degrees in the range [-90, 90].

Pose and Trajectory

To specify an object in 3-D space fully, you can combine position and orientation. Pose is defined as the combination of position and orientation. Trajectory defines how pose changes over time. To generate ground-truth trajectories in Sensor Fusion and Tracking Toolbox, use kinematicTrajectory or waypointTrajectory. To generate Earth-centered trajectory, use geoTrajectory. To simulate the motion of multiple platforms, use trackingScenario.

See Also

quaternion | "Rotations, Orientation, and Quaternions"

References

[1] IEEE. Standard for Distributed Interactive Simulation - Application Protocols. IEEE P1278.1/D16 Rev 18, May 2012.

Pose

Determine Pose Using Inertial Sensors and GPS

Sensor Fusion and Tracking Toolbox enables you to fuse data read from IMUs and GPS to estimate pose. Use the insfilter function to create an INS/GPS fusion filter suited to your system:

- MARGGPSFuser -- Estimate pose using a magnetometer, gyroscope, accelerometer, and GPS data.
- NHConstrainedIMUGPSFuser -- Estimate pose using a gyroscope, accelerometer, and GPS data. This algorithm uses nonholonomic constraints.

This tutorial provides an overview of inertial sensor fusion with GPS in Sensor Fusion and Tracking Toolbox.

To learn how to model inertial sensors and GPS, see "Model IMU, GPS, and INS/GPS" on page 2-2. To learn how to generate the ground-truth motion that drives sensor models, see waypointTrajectory and kinematicTrajectory.

You can also fuse inertial sensor data without GPS to estimate orientation. See "Determine Orientation Using Inertial Sensors" on page 3-2.

Fuse Inertial Sensor and GPS data

An inertial navigation system (INS) consists of sensors that detect translational motion (accelerometers), rotation (gyroscopes), and in some systems magnetic fields (magnetometers). By fusing the sensor data continuously, an INS can dead reckon a platform's pose without external sensors. However, INS pose estimation generally decreases in accuracy over time and needs to be corrected using an external reference, such as GPS readings. Common configurations for INS/GPS fusion include MARG+GPS for aerial vehicles and accelerometer+gyroscope+GPS with nonholonomic constraints for ground vehicles.

Fuse MARG and GPS

A magnetic, angular rate, and gravity (MARG) system consists of a magnetometer, gyroscope, and accelerometer. To fuse MARG and GPS data, create a insfilterMARG object:

```
FUSE = insfilterMARG
FUSE =
    insfilterMARG with properties:
            IMUSampleRate: 100 Hz
        ReferenceLocation: [0 0 0] [deg deg m]
            State: [22x1 double]
            StateCovariance: [22x22 double]
    Multiplicative Process Noise Variances
```

GyroscopeNoise: [1e-09 1e-09 1e-09] (rad/s)2
AccelerometerNoise: [0.0001 0.0001 0.0001]
GyroscopeBiasNoise: [1e-10 1e-10 1e-10]
AccelerometerBiasNoise: [0.0001 0.0001 0.0001]
$\left(\mathrm{m} / \mathrm{s}^{2}\right)^{2}$
$(\mathrm{rad} / \mathrm{s})^{2}$
$\left(\mathrm{m} / \mathrm{s}^{2}\right)^{2}$

Additive Process Noise Variances
GeomagneticVectorNoise: [1e-06 1e-06 le-06] $u T^{2}$
MagnetometerBiasNoise: [0.1 0.1 0.1] uT²
insfilterMARG uses an extended Kalman filter with the following methods:

- predict -- Update states using accelerometer and gyroscope data
- fusemag -- Correct states using magnetometer data
- fusegps -- Correct states using GPS data

Generally, accelerometer and gyroscope data is acquired at a higher rate than magnetometer and GPS data. You can use nested loops to call predict, fusemag, and fusegps at different rates.

```
accelData = [0 0 9.8];
gyroData = [0 0 0];
magData = [19.535 -5.109 47.930];
magCov = 0;
position = [0 0 0];
positionCov = 0;
velocity = rand(1,3);
velocityCov = 0;
predictDataSampleRate = 100;
fuseDataSampleRate = 2;
predictSamplesPerFuse = predictDataSampleRate/fuseDataSampleRate;
duration = 5;
for i = 1:duration*fuseDataSampleRate
    for j = 1:predictSamplesPerFuse
        predict(FUSE,accelData,gyroData);
    end
    fusegps(FUSE,position,positionCov,velocity,velocityCov);
    fusemag(FUSE,magData,magCov);
end
```

At any time, you can call pose to return the current position and orientation estimates:

```
[position, orientation] = pose(FUSE)
position = 1\times3
10-15 x
    -0.3331 -0.2775 0.3886
orientation = quaternion
    0.84705 - 0.25459i - 0.46613j - 0.020379k
```

For a complete example workflow using MARGGPSFuser, see "IMU and GPS Fusion for Inertial Navigation".

Fuse Accelerometer, Gyroscope, and GPS with Nonholonomic Constraints

Fusing accelerometer, gyroscope, and GPS data with nonholonomic constraints is a common configuration for ground vehicle pose estimation. To fuse accelerometer, gyroscope, and GPS data, create a insfilterNonholonomic object:

```
FUSE = insfilterNonholonomic
FUSE =
    insfilterNonholonomic with properties:
            IMUSampleRate: 100 Hz
        ReferenceLocation: [0 0 0] [deg deg m]
            DecimationFactor: 2
        Extended Kalman Filter Values
                            State: [16x1 double]
        StateCovariance: [16x16 double]
        Process Noise Variances
                            GyroscopeNoise: [4.8e-06 4.8e-06 4.8e-06] (rad/s)2
            AccelerometerNoise: [0.048 0.048 0.048] (m/s2)2
            GyroscopeBiasNoise: [4e-14 4e-14 4e-14] (rad/s)2
            GyroscopeBiasDecayFactor: 0.999
                AccelerometerBiasNoise: [4e-14 4e-14 4e-14] (m/s 2)}\mp@subsup{)}{}{2
        AccelerometerBiasDecayFactor: 0.9999
    Measurement Noise Variances
        ZeroVelocityConstraintNoise: 0.01 (m/s)2
```

insfilterNonholonomic uses an extended Kalman filter with the following functions:

- predict -- Update states using accelerometer and gyroscope data
- fusegps -- Correct states using GPS data

Generally, accelerometer and gyroscope data is acquired at a higher rate than GPS data. You can use nested loops to call predict and fusegps at different rates.

```
accelData = [0 0 9.8];
gyroData = [0 0 0];
position = [0 0 0];
positionCov = 0;
velocity = rand(1,3);
velocityCov = 0;
predictDataSampleRate = 100;
fuseDataSampleRate = 2;
predictSamplesPerFuse = predictDataSampleRate/fuseDataSampleRate;
duration = 5;
for i = 1:duration*fuseDataSampleRate
    for j = 1:predictSamplesPerFuse
        predict(FUSE,accelData,gyroData);
```

```
    end
    fusegps(FUSE,position,positionCov,velocity,velocityCov);
end
```

At any time, you can call pose to return the current position and orientation estimates:

```
[position, orientation] = pose(FUSE)
```

position $=1 \times 3$
$0 \quad 0 \quad 0$
orientation = quaternion
$0.9726+0 i+0 j+0.23248 k$
For a complete example workflow using NHConstrainedIMUGPSFuser, see "Estimate Position and Orientation of a Ground Vehicle".

See Also

imuSensor|ecompass | imufilter|ahrsfilter|ahrsl0filter|insfilter

More About

- "Model IMU, GPS, and INS/GPS" on page 2-2
- "Determine Orientation Using Inertial Sensors" on page 3-2
- "Determine Pose Using Inertial Sensors and GPS" on page 5-2

Tracking Scenario

Tracking Simulation Overview

You can build a complete tracking simulation using the functions and objects supplied in this toolbox. The workflow for sensor fusion and tracking simulation consists of three (and optionally four) components. These components are

1 Use the tracking scenario generator to create ground truth for all moving and stationary radar platforms and all target platforms (planes, ships, cars, drones). The trackingScenario class models the motion of all platforms in a global coordinate system called scenario coordinates. These objects can represent ships, ground vehicles, airframes, or any object that the radar detects. See "Orientation, Position, and Coordinate Convention" on page 4-2 for a discussion of coordinate systems.
2 Optionally, simulate an inertial navigation system (INS) that provides radar sensor platform position, velocity, and orientation relative to scenario coordinates.
3 Create models for each radar sensor with specifications and parameters using the fusionRadarSensor or radarEmitter objects. Using target platform pose and profile information, generate synthetic radar detections for each radar-target combination. Methods belonging to trackingScenario retrieve the pose and profile of any target platform. The trackingScenario generator does not have knowledge of scenario coordinates. It knows the relative positions of the target platforms with respect to the body platform of the radar. Therefore, the detector can only generate detections relative to the radar location and orientation.

If there is an INS attached to a radar platform, then the radar can transform detections to the scenario coordinate system. The INS allows multiple radars to report detections in a common coordinate system.
4 Process radar detections with a multi-object tracker to associate detections to existing tracks or create tracks. Multi-object tracks include trackerGNN, trackerTOMHT, trackerJPDA and trackerPHD. If there is no INS, the tracker can only generate tracks specific to one radar. If an INS is present, the tracker can create tracks using measurements from all radars.

The flow diagram shows the progression of information in a tracking simulation.

Creating a Tracking Scenario

You can define a tracking simulation by using the trackingScenario object. By default, the object creates an empty scenario. You can then populate the scenario with platforms by calling the platform method as many times as needed. A platform is an object (moving or stationary), which can either be a sensor, a target, or any other entity. A platform can be modeled as a point or a cuboid by specifying the Dimensions property of Platform. After creating a platform, you can specify the motion of the platform by using its Trajectory property. To configure a trajectory, you can use waypointTrajectory, which allows you to specify the 3-D waypoints that the platform follows and the associated arrival time for each waypoint. Alternately, you can use kinematicTrajectory, which allows you to specify the 3-D acceleration and angular velocity of the platform with initial pose and translational velocity. You can also specify the orientation of a platform using the Orientation property of kinematicTrajectory or waypointTrajectory.

Run the simulation by calling the advance method on the trackingScenario object in a loop, or by calling the record method to run the simulation all at once. You can set the simulation update interval using the UpdateRate property in the trackingScenario object. You can set the properties of a platform or leave them to their default value. You can set them all except for PlatformID. The complete list of Platform properties is shown here.

Platform Properties

| PlatformID | Scenario-defined platform ID. |
| :--- | :--- |
| ClassID | User-specified platform classification ID. |
| Dimensions | 3-D dimensions of a cuboid that approximates the
 size of a platform and offset of the origin of the
 platform body frame from the center of the
 cuboid. The default value of Dimensions has all
 fields equal to zero, which corresponds to a point
 model. |
| Trajectory | Platform motion, specified by
 kinematicTrajecotry or
 waypointTrajectory. |
| Signatures | Platform signatures, specified as a cell array of
 irSignature, rcsSignature, and
 tsSignature objects. A signature represents
 the reflection or emission pattern of a platform. |
| PoseEstimator | A pose estimator, specified as a pose-estimator
 object such as insSensor (default). |
| Emitter | Emitters mounted on platform, specified as a cell
 array of emitter objects, such as radarEmitter
 or sonarEmitter. |
| Sensors | Sensors mounted on platform, specified as a cell
 array of sensor objects such as irSensor or
 sonarSensor. |

At any time during the simulation, you can retrieve the current values of platform properties using the platformPoses and platformProfiles methods of the trackingScenario object. Both the platformPoses and platformProfiles methods return properties of all platforms with respect to the scenario's NED frame. You can also use the pose method of the Platform to return the
properties of one specific platform. In addition, the Platform.targetPoses method, while similar, returns properties of other platforms with respect to a specified platform.

Radar Detections

Simulate Radar Detections

The fusionRadarSensor object simulates the detection of targets by a radar. You can use the object to model many properties of real radar sensors. For example, you can

- simulate real detections with added random noise
- generate false alarms
- simulate mechanically scanned antennas and electronically scanned phased arrays
- specify angular, range, and range-rate resolution and limits

The radar sensor is assumed to be mounted on a platform and carried by the platform as it maneuvers. A platform can carry multiple sensors. When you create a sensor, you specify sensor positions and orientations with respect to the body coordinate system of a platform. Each call to fusionRadarSensor creates a sensor. The output of fusionRadarSensor generates the detection that can be used as input to multi-object trackers, such as trackerGNN, or any tracking filters, such as trackingKF.

The radar platform does not maintain any information about the radar sensors that are mounted on it. (The sensor itself contains its position and orientation with respect to the platform on which it is mounted but not which platform). You must create the association between radar sensors and platforms. A way to do this association is to put the platform and its associated sensors into a cell array. When you call a particular sensor, pass in the platform-centric target pose and target profile information. The sensor converts this information to sensor-centric poses. Target poses are outputs of trackingScenario methods.

Create Radar Sensor

You can create a radar sensor using the fusionRadarSensor object. Set the radar properties using name-value pairs and then execute the simulator. For example,

```
radar1 = fusionRadarSensor( ...
    'SensorIndex',1,...
    'UpdateRate',10, ... % Hz
    'ReferenceRange', 111.0e3, ... % m
    'ReferenceRCS', 0.0, ... % dBsm
    'FieldOfView',[70,10], ...
    'HasElevation',false, ...
    'HasRangeRate',false, ...
    'AzimuthResolution',1.4, ... % deg
    'RangeResolution', 135.0)
        % [az;el] deg
    % m
```


Convenience Syntaxes

There are several syntaxes of fusionRadarSensor that make it easier to specify the properties of commonly implemented radar scan modes.

- sensor = fusionRadarSensor('Rotator') creates a fusionRadarSensor object that mechanically scans 360° in azimuth. Setting HasElevation to true points the radar antenna towards the center of the elevation field of view.
- sensor = fusionRadarSensor('Sector') creates a fusionRadarSensor object that mechanically scans a 90° azimuth sector. Setting HasElevation to true, points the radar antenna towards the center of the elevation field of view. You can change the ScanMode to
'Electronic' to electronically scan the same azimuth sector. In this case, the antenna is not mechanically tilted in an electronic sector scan. Instead, beams are stacked electronically to process the entire elevation spanned by the scan limits in a single dwell.
- sensor = fusionRadarSensor('Raster') returns a fusionRadarSensor object that mechanically scans a raster pattern spanning 90° in azimuth and 10° in elevation upwards from the horizon. You can change the ScanMode property to 'Electronic' to perform an electronic raster scan in the same volume.
- sensor = fusionRadarSensor('No scanning') returns a fusionRadarSensor object that stares along the radar antenna boresight direction. No mechanical or electronic scanning is performed.

You can set other radar properties when you use these syntaxes. For example,

```
sensor = fusionRadarSensor(1,'Raster','ScanMode','Electronic')
```


Radar Sensor Parameters

The properties specific to the fusionRadarSensor object are listed here. For more detailed information, type
help fusionRadarSensor
at the command line.
Sensor location parameters.

Sensor Location

| SensorIndex | A unique identifier for each sensor. |
| :---: | :---: |
| UpdateRate | Rate at which sensor updates are generated, specified as a positive scalar. The reciprocal of this property must be an integer multiple of the simulation time interval. Updates requested between sensor update intervals do not return detections. |
| MountingLocation | Sensor ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) defining the offset of the sensor origin from the origin of its platform. The default value positions the sensor origin at the platform origin. |
| MountingAngles | Yaw, pitch, and roll angles of the sensor mounting frame with respect to the platform frame. |
| DetectionCoordinates | Specifies the coordinate system for detections reported in the "Detections" output struct. The coordinate system can be one of:
 - 'Scenario' -- detections are reported in the scenario coordinate frame in rectangular coordinates. This option can only be selected when the sensor HasINS property is set to true.
 - 'Body ' -- detections are reported in the body frame of the sensor platform in rectangular coordinates.
 - 'Sensor rectangular' -- detections are reported in the radar sensor coordinate frame in rectangular coordinates aligned with the sensor frame axes.
 - 'Sensor spherical' -- detections are reported in the radar sensor coordinate frame in spherical coordinates based on the sensor frame axes. |

Sensitivity parameters.

Sensitivity Parameters

| DetectionProbability | Probability of detecting a target with radar cross
 section, ReferenceRCS, at the range of
 ReferenceRange. |
| :--- | :--- |
| FalseAlarmRate | The probability of a false detection within each
 resolution cell of the radar. Resolution cells are
 determined from the AzimuthResolution and
 RangeResolution properties and when enabled
 the ElevationResolution and
 RangeRateResolution properties. |
| ReferenceRange | Range at which a target with radar cross section,
 ReferenceRCS, is detected with the probability
 specified in DetectionProbability. |
| ReferenceRCS | The target radar cross section (RCS) in dB at
 which the target is detected at the range
 specified by ReferenceRange with a detection
 probability specified by
 DetectionProbability. |

Sensor resolution and bias parameters.

Resolution Parameters

| AzimuthResolution | The radar azimuthal resolution defines the
 minimum separation in azimuth angle at which
 the radar can distinguish two targets. |
| :--- | :--- |
| ElevationResolution | The radar elevation resolution defines the
 minimum separation in elevation angle at which
 the radar can distinguish two targets. This
 property only applies when the HasElevation
 property is set to true. |
| RangeResolution | The radar range resolution defines the minimum
 separation in range at which the radar can
 distinguish two targets. |
| RangeRateResolution | The radar range rate resolution defines the
 minimum separation in range rate at which the
 radar can distinguish two targets. This property
 only applies when the HasRangeRate property is
 set to true. |
| AzimuthBiasFraction | This property defines the azimuthal bias
 component of the radar as a fraction of the radar
 azimuthal resolution specified by the
 AzimuthResolution property. This property
 sets a lower bound on the azimuthal accuracy of
 the radar. |
| ElevationBiasFraction | This property defines the elevation bias
 component of the radar as a fraction of the radar
 elevation resolution specified by the
 ElevationResolution property. This property
 sets a lower bound on the elevation accuracy of
 the radar. This property only applies when the
 HasElevation property is set to true. |
| RangeBiasFraction | This property defines the range bias component
 of the radar as a fraction of the radar range
 resolution specified by the RangeResolution
 property. This property sets a lower bound on the
 range accuracy of the radar. |
| RangeRateBiasFraction | This property defines the range rate bias
 component of the radar as a fraction of the radar
 range resolution specified by the
 RangeRateResolution property. This property
 sets a lower bound on the range rate accuracy of
 the radar. This property only applies when you set
 the HasRangeRate property to true. |

Enabling parameters.

Enabling Parameters

$\left.$| HasElevation | This property allows the radar sensor to scan in
 elevation and estimate elevation from target
 detections. |
| :--- | :--- |
| HasRangeRate | This property allows the radar sensor to estimate
 range rate. |
| HasFalseAlarms | This property allows the radar sensor to generate
 false alarm detection reports. |
| HasRangeRateAmbiguites | When true, the radar does not resolve range
 ambiguities. When a radar sensor cannot resolve
 range ambiguities, targets at ranges beyond the
 MaxUnambiguousRange property value are
 wrapped into the interval [0
 MaxUnambiguousRange]. When false, targets
 are reported at their unwrapped range. |
| HasNoise | When true, the radar does not resolve range rate
 ambiguities. When a radar sensor cannot resolve
 range rate ambiguities, targets at range rates
 above the MaxUnambiguousRadialSpeed
 property value are wrapped into the interval [0
 MaxUnambiguousRadialSpeed]. When false,
 targets are reported at their unwrapped range
 rates. This property only applies when the
 HasRangeRate property is set to true. |
| Specifies if noise is added to the sensor | |
| measurements. Set this property to true to | |
| report measurements with noise. Set this | |
| property to false to report measurements | |
| without noise. The reported measurement noise | |
| covariance matrix contained in the output | |
| objectDetection struct is always computed | |
| regardless of the setting of this property. | |\(\left|\begin{array}{l}Enable occlusion from extended objects, specified

as true or false. Set this property to true to

model occlusion from extended objects. Note that

both extended objects and point targets can be

occluded by extended objects, but a point target

cannot occlude another point target or an

extended object. Set this property to false to

disable occlusion of extended objects.\end{array}\right|\)| Set this property to true to enable an optional |
| :--- |
| input argument to pass the current estimate of |
| the sensor platform pose to the sensor. This pose |
| information is added to the |
| MeasurementParameters field of the reported |
| detections. Then, the tracking and fusion |
| algorithms can estimate the state of the target |
| detections in scenario coordinates. | \right\rvert\,

Range and range rate parameters.
Range and Range Rate Parameters

| MaxUnambiguousRange | This property specifies the range at which the
 radar can unambiguously resolve the range of a
 target. Targets detected at ranges beyond the
 unambiguous range are wrapped into the range
 interval [0 MaxUnambiguousRange]. This
 property only applies to true target detections
 when you set HasRangeAmbiguities property
 to true. | | | |
|---|---|---|---|---|
| MaxUnambiguousRadialSpeed | |
| This property also defines the maximum range at | |
| which false alarms are generated. This property | |
| only applies to false target detections when you | |
| set HasFalseAlarms property to true. | |$|$| This property specifies the maximum magnitude |
| :--- |
| value of the radial speed at which the radar can |
| unambiguously resolve the range rate of a target. |
| Targets detected at range rates whose magnitude |
| is greater than the maximum unambiguous radial |
| speed are wrapped into the range rate interval [- |
| MaxUnambiguousRadialSpeed |
| MaxUnambiguousRadialSpeed]. This property |
| only applies to true target detections when you |
| set both the HasRangeRate and |
| HasRangeRateAmbiguities properties to |
| true. |

Detector Input

Each sensor created by fusionRadarSensor accepts as input an array of target structures. This structure serves as the interface between the trackingScenario and the sensors. You create the target struct from target poses and profile information produced by trackingScenario or equivalent software.

The structure contains these fields.

| Field | Description |
| :--- | :--- |
| PlatformID | Unique identifier for the platform, specified as a
 positive integer. This is a required field with no
 default value. |

| Field | Description |
| :--- | :--- |
| ClassID | User-defined integer used to classify the type of
 target, specified as a nonnegative integer. 0 is
 reserved for unclassified platform types and is
 the default value. |
| Position | Position of target in platform coordinates,
 specified as a real-valued, 1-by-3 vector. This is a
 required field with no default value. Units are in
 meters. |
| Velocity | Velocity of target in platform coordinates,
 specified as a real-valued, 1-by-3 vector. Units are
 in meters per second. The default is [0 0 0]. |
| Acceleration | Acceleration of target in platform coordinates,
 specified as a 1-by-3 row vector. Units are in
 meters per second-squared. The default is [0 0
 0]. |
| 0rientation | Orientation of the target with respect to platform
 coordinates, specified as a scalar quaternion or a
 3-by-3 rotation matrix. Orientation defines the |
| frame rotation from the platform coordinate | |
| system to the current target body coordinate | |
| system. Units are dimensionless. The default is | |
| quaternion (1,0,0,0). | |

You can create a target pose structure by merging information from the platform information output from the targetProfiles method of trackingScenario and target pose information output from the targetPoses method on the platform carrying the sensors. You can merge them by extracting for each PlatformID in the target poses array, the profile information in platform profiles array for the same PlatformID.

The platform targetPoses method returns this structure for each target other than the platform.

Target Poses

| platformID |
| :--- |
| ClassID |
| Position |
| Velocity |
| Yaw |
| Pitch |
| Roll |
| AngularVelocity |

The platformProfiles method returns this structure for all platforms in the scenario.

Platform Profiles

| PlatformID |
| :--- |
| ClassID |
| RCSPattern |
| RCSAzimuthAngles |
| RCSElevationAngles |

Radar Sensor Coordinate Systems

Detections consist of measurements of positions and velocities of targets and their covariance matrices. Detections are constructed with respect to sensor coordinates but can be output in one of several coordinates. Multiple coordinate frames are used to represent the positions and orientations of the various platforms and sensors in a scenario.

In a radar simulation, there is always a top-level global coordinate system which is usually the North-East-Down (NED) Cartesian coordinate system defined by a tangent plane at any point on the surface of the Earth. The trackingScenario object models the motion of platforms in the global coordinate system. When you create a platform, you specify its location and orientation relative to the global frame. These quantities define the body axes of the platform. Each radar sensor is mounted on the body of a platform. When you create a sensor, you specify its location and orientation with respect to the platform body coordinates. These quantities define the sensor axes. The body and radar axes can
change over time, however, global axes do not change.

Additional coordinate frames can be required. For example, often tracks are not maintained in NED (or ENU) coordinates, as this coordinate frame changes based on the latitude and longitude where it is defined. For scenarios that cover large areas (over 100 kilometers in each dimension), earthcentered earth-fixed (ECEF) can be a more appropriate global frame to use.

A radar sensor generates measurements in spherical coordinates relative to its sensor frame. However, the locations of the objects in the radar scenario are maintained in a top-level frame. A radar sensor is mounted on a platform and will, by default, only be aware of its position and orientation relative to the platform on which it is mounted. In other words, the radar expects all target objects to be reported relative to the platform body axes. The radar reports the required transformations (position and orientation) to relate the reported detections to the platform body axes. These transformations are used by consumers of the radar detections (e.g. trackers) to maintain tracks in the platform body axes. Maintaining tracks in the platform body axes enables the fusion of measurement or track information across multiple sensors mounted on the same platform.

If the platform is equipped with an inertial navigation system (INS) sensor, then the location and orientation of the platform relative to the top-level frame can be determined. This INS information can be used by the radar to reference all detections to scenario coordinates.

INS

When you specify HasINS as true, you must pass in an INS struct into the step method. This structure consists of the position, velocity, and orientation of the platform in scenario coordinates. These parameters let you express target poses in scenario coordinates by setting the DetectionCoordinates property.

Detections

Radar sensor detections are returned as a cell array of objectDetection objects. A detection contains these properties.

objectDetection Structure

| Field | Definition |
| :--- | :--- |
| Time | Measurement time |
| Measurement | Measurements |
| MeasurementNoise | Measurement noise covariance matrix |
| SensorIndex | Unique ID of the sensor |
| ObjectClassID | Object classification |
| MeasurementParameters | Parameters used by initialization functions of any
 nonlinear Kalman tracking filters |
| ObjectAttributes | Additional information passed to tracker |

Measurement and MeasurementNoise are reported in the coordinate system specified by the DetectionCoordinates property of the fusionRadarSensor are reported in sensor Cartesian coordinates.

Measurement Coordinates

| DetectionCoordinates | Measurement and Measurement Noise Coordinates | | |
| :---: | :---: | :---: | :---: |
| 'Scenario' | Coordinate Dependence on HasRangeRate | | |
| 'Body ' | HasRangeRate | | Coordinates |
| 'Sensor rectangular' | true | | [x;y;z;vx;vy;vz] |
| | false | | [x;y;z] |
| 'Sensor spherical' | Coordinate Dependence on HasRangeRate and HasElevation | | |
| | HasRangeRat e | HasElevatio
 n | Coordinates |
| | true | true | $\begin{aligned} & \text { [az;el; rng; } \\ & \text { rr] } \end{aligned}$ |
| | true | false | [az;rng;rr] |
| | false | true | [az;el;rng] |
| | false | false | [az;rng] |

The MeasurementParameters field consists of an array of structs describing a sequence of coordinate transformations from a child frame to a parent frame or the inverse transformations (see "Frame Rotation" on page 4-3). The longest possible sequence of transformations is: Sensor \rightarrow Platform \rightarrow Scenario. For example, if the detections are reported in sensor spherical coordinates and HasINS is set to false, then the sequence consists of one transformation from sensor to platform. If HasINS is true, the sequence of transformations consists of two transformations - first to platform coordinates then to scenario coordinates. Trivially, if the detections are reported in platform rectangular coordinates and HasINS is set to false, the transformation consists only of the identity.

Each struct takes the form:
MeasurementParameters

| Parameter | Definition |
| :--- | :--- |
| Frame | Enumerated type indicating the frame used to
 report measurements. When detections are
 reported using a rectangular coordinate system,
 Frame is set to ' rectangular'. When
 detections are reported in spherical coordinates,
 Frame is set ' spherical ' for the first struct. |
| OriginPosition | Position offset of the origin of frame(k) from the
 origin of frame(k+1) represented as a 3-by-1
 vector. |
| OriginVelocity | Velocity offset of the origin of frame(k) from the
 origin of frame(k+1) represented as a 3-by-1
 vector. |
| Orientation | A 3-by-3 real-valued orthonormal frame rotation
 matrix which rotates the axes of frame(k+1) into
 alignment with the axes of frame(k). |
| IsParentToChild | A logical scalar indicating if Orientation
 performs a frame rotation from the parent
 coordinate frame to the child coordinate frame. If
 false, Orientation performs a frame rotation
 from the child's coordinate frame to the parent's
 coordinate frame. |
| HasElevation | A logical scalar indicating if the frame has three-
 dimensional position. Only set to false for the first
 struct when detections are reported in
 spherical coordinates and HasElevation is
 false, otherwise it is true. |
| HasVelocity | A logical scalar indicating if the reported
 detections include velocity measurements. true
 when HasRangeRate is enabled, otherwise
 fal se. |

ObjectAttributes

| Attribute | Definition |
| :--- | :--- |
| Target Index | Identifier of the platform, Plat formID, that
 generated the detection. For false alarms, this
 value is negative. |
| SNR | Detection signal-to-noise ratio in dB. |

Multi-Object Tracking

Tracking is the process of estimating the state of motion of an object based on measurements taken off the object. For an object moving in space, the state usually consists of position, velocity, and any other state parameters of objects at any given time. A state is the necessary information needed to predict future states of the system given the specified equations of motion. The estimates are derived from observations on the objects and are updated as new observations are taken. Observations are made using one or more sensors. Observations can only be used to update a track if it is likely that the observation is that of the object having that track. Observations need to be either associated with an existing track or used to create a new track. When several tracks are present, there are several ways observations are associated with one and only one track. The chosen track is based on the "closest" track to the observation.

Tracking and Tracking Filters

Multi-Object Tracking

You can use multi-sensor, multi-target trackers, trackerGNN, trackerJPDA, and trackerTOMHT, to track multiple targets. These trackers implement the multi-object tracking problem using the measurement-to-track association approach. Tracks are initiated and updated using sensor detections of targets. Trackers take several steps when new detections are made:

- The tracker tries to assign a detection to an existing track.
- The tracker creates a track for each detection it cannot assign. When starting the tracker, all detections are used to create tracks.
- The tracker evaluates the status of each track. For new tracks, the status is tentative until enough detections are made to confirm the track. For existing tracks, newly assigned detections are used by the tracking filter to update the track state. When a track has no new added detections, the track is coasted (predicted) until new detections are assigned to it. If no new detections are added after a specified number of updates, the track is deleted.

When tracking multiple objects using these trackers, there are several things to consider:

- Decide which tracker to use.
- trackerGNN uses a global nearest-neighbor assignment algorithm, which maintains a single hypothesis about the tracked object. The tracker offers low computation cost but is not robust during ambiguous association events.
- trackerTOMHT assigns detections based on a track-oriented, multi-hypothesis approach, which maintains multiple hypotheses about the tracked object. The tracker is robust during ambiguous data association events but is computationally more expensive.
- trackerJPDA uses a joint probabilistic data association approach, which applies a soft assignment where multiple detections can contribute to each track. The tracker balances the robustness and computation cost between trackerGNN and trackerTOMHT.

See the "Tracking Closely Spaced Targets Under Ambiguity" example for a comparison between these three trackers.

- Decide which type of tracking filter to use.

The choice of tracking filter depends on the expected dynamics of the object you want to track. The toolbox provides multiple Kalman filters including the Linear Kalman filter, trackingKF, the Extended Kalman filter, trackingEKF, the Unscented Kalman filter, trackingUKF, and the Cubature Kalman filter, trackingCKF. The linear Kalman filter is used when the dynamics of the object follow a linear model and the measurements are linear functions of the state vector. The extended, unscented, and cubature Kalman filters are used when the dynamics are nonlinear, the measurement model is nonlinear, or both. The toolbox also provides non-Gaussian filters such as the particle filter, trackingPF, Gaussian-sum filter, trackingGSF, and the Interacting Multiple Model (IMM) filter, trackingIMM. See the "Tracking with Range-Only Measurements" and "Tracking Maneuvering Targets" examples for more information about these filters.

You can set the type of filter by specifying the FilterInitializationFcn property of a tracker. For example, if you set the FilterInitializationFcn property to @initcaekf, then the tracker uses the initcaekf function to create a constant-acceleration extended Kalman filter for a new track generated from detections.

- Decide which track logic to use.

You can specify the conditions under which a track is confirmed or deleted by setting the TrackLogic property. Three algorithms are supported:

- 'History' - Track confirmation and deletion are based on the number of times the track has been assigned to a detection in the last several tracker updates. You can use this logic with trackerGNN and trackerJPDA.
- 'Score' - Track confirmation and deletion are based on a log-likelihood computation. A high score means that the track is more likely to be valid. A low score means that the track is more likely to be false. You can use this logic with trackerGNN and trackerTOMHT.
- 'Integrated ' - Track confirmation and deletion are based on the probability of track existence. You can use this logic with trackerJPDA.

For more details, see the "Introduction to Track Logic" example.
You can also use a multi-sensor, multi-target tracker, trackerPHD, to track multiple targets simultaneously. trackerPHD approaches the multi-object tracking problem using the random finite set (RFS) method and tracks the probability hypothesis density (PHD) of a scenario. trackerPHD extracts peaks from the PHD-intensity to represent potential targets and maintain identities of targets by assigning a label to each component. The toolbox offers one realization of PHD, ggiwphd, which represents the PHD of extended targets using a Gamma Gaussian Inverse-Wishart (GGIW) target-state model. You can represent the configurations of sensors for trackerPHD using trackingSensorConfiguration.

Multi-Object Tracker Properties

trackerGNN Properties

The trackerGNN object is a multi-sensor, multi-object tracker that uses global nearest neighbor association. Each detection can be assigned to only one track (single-hypothesis tracker) which can also be a new track that the detection initiates. At each step of the simulation, the tracker updates the track state. You can specify the behavior of the tracker by setting the following properties.

trackerGNN Properties

| FilterInitializationFcn | A handle to a function that initializes a tracking
 filter based on a single detection. This function is
 called when a detection cannot be assigned to an
 existing track. For example, initcaekf creates
 an extended Kalman filter for an accelerating
 target. All tracks are initialized with the same
 type of filter. |
| :--- | :--- |
| Assignment | The name of the assignment algorithm. The
 tracker provides three built-in algorithms:
 'Munkres ', ' Jonker-Volgenant ' , and
 'Auction ' algorithms. You can also create your
 own custom assignment algorithm by specifying
 'Custom'. |
| CustomAssignmentFcn | The name of the custom assignment algorithm
 function. This property is available on when the
 Assignment property is set to 'Custom' . |
| AssignmentThreshold | Specify the threshold that controls the
 assignment of a detection to a track. Detections
 can only be assigned to a track if their normalized
 distance from the track is less than the
 assignment threshold. Each tracking filter has a
 different method of computing the normalized
 distance. Increase the threshold if there are
 detections that can be assigned to tracks but are
 not. Decrease the threshold if there are
 detections that are erroneously assigned to |
| tracks. | |

| ConfirmationThreshold | Specify the threshold for track confirmation. The threshold depends on the setting for TrackLogic
 - 'History' -- specify the confirmation threshold as [M N]. If the track is detected at least M times in the last N updates, the track is confirmed.
 - 'Score' --- specify the confirmation threshold as a single number. If the score is greater than or equal to the threshold, this track is confirmed. |
| :---: | :---: |
| DeletionThreshold | Specify the threshold for track deletion. The threshold depends on the setting of TrackLogic
 - 'History ' -- specify the deletion threshold as a pair of integers [PR]. A track is deleted if it is not assigned to a track at least P times in the last R updates.
 - 'Score ' --- specify the deletion threshold as a single number. The track is deleted if its score decreases by at least this threshold from its maximum track score. |
| DetectionProbability | Specify the probability of detection as a number in the range $(0,1)$. The probability of detection is used to calculate the track score when initializing and updating a track. This property is used only when TrackLogic is set to 'Score'. |
| FalseAlarmRate | Specify the rate of false detection as a number in the range $(0,1)$. The false alarm rate is used to calculate the track score when initializing and updating a track. This property is used only when TrackLogic is set to 'Score'. |
| Beta | Specify the rate of new tracks per unit volume as a positive number. This property is used only when TrackLogic is set to 'Score'. The rate of new tracks is used in calculating the track score during track initialization. This property is used only when TrackLogic is set to 'Score'. |

| Volume | Specify the volume of the sensor measurement
 bin as a positive scalar. For example, a radar
 sensor that produces a 4-D measurement of
 azimuth, elevation, range, and range-rate creates
 a 4-D volume. The volume is a product of the
 radar angular beamwidth, the range bin width,
 and the range-rate bin width. The volume is used
 in calculating the track score when initializing
 and updating a track. This property is used only
 when TrackLogic is set to ' Score '. | | | |
|---|---|---|---|---|
| MaxNumTracks | Specify the maximum number of tracks the
 tracker can maintain. |
| MaxNumSensors | Specify the maximum number of sensors sending
 detections to the tracker as a positive integer.
 This number must be greater than or equal to the
 largest SensorIndex value used in the
 objectDetection input to the step method.
 This property determines how many sets of
 ObjectAttributes each track can have. |
| HasDetectableTrackIDsInput | Set this property to true if you want to provide a
 list of detectable track IDs as input to the step
 method. This list contains all tracks that the |
| sensors expect to detect and, optionally, the | |
| probability of detection for each track ID. | |$|$| Set this property to true if you want to provide |
| :--- |
| an assignment cost matrix as input to the step |
| method. |

trackerGNN Input

The input to the trackerGNN consists of a list of detections, the update time, cost matrix, and other data. Detections are specified as a cell array of objectDetection objects (see "Detections"). The input arguments are listed here.
trackerGNN Input

| tracker | A trackerGNN object. |
| :--- | :--- |
| detections | Cell array of objectDetection objects (see
 "Detections"). |
| time | Time to which all the tracks are to be updated
 and predicted. The time at this execution step
 must be greater than the value in the previous
 call. |
| costmatrix | Cost matrix for assigning detections to tracks. A
 real T-by-D matrix, where T is the number of
 tracks listed in the allTracks argument
 returned from the previous call to step. D is the
 number of detections that are input in the current
 call. A larger cost matrix entry means a lower
 likelihood of assignment. |
| detectableTrackIDs | IDs of tracks that the sensors expect to detect,
 specified as an M-by- 1 or M-by-2 matrix. The first
 column consists of track IDs, as reported in the
 TrackID field of the tracker output. The second
 column is optional and allows you to add the
 detection probability for each track. |

trackerGNN Output

The output of the tracker can consist of up to three struct arrays with track state information. You can retrieve just the confirmed tracks, the confirmed and tentative tracks, or these tracks plus a combined list of all tracks.

```
confirmedTracks = step(...)
[confirmedTracks, tentativeTracks] = step(...)
[confirmedTracks, tentativeTracks, allTracks] = step(...)
```

The fields contained in the struct are:

trackerGNN Output struct

| TrackID | Unique integer that identifies the track. |
| :--- | :--- |
| UpdateTime | Time to which the track is updated. |
| Age | Number of updates since track initialization. |
| State | State vector at update time. |
| StateCovariance | State covariance matrix at update time. |
| IsConfirmed | True if the track is confirmed. |
| TrackLogic | The track logic used in confirming the track -
 'History' or 'Score'. |
| TrackLogicState | The current state of the track logic.
 - For 'History' track logic, a 1-by- Q logical
 array, where Q is the larger of N specified in
 the confirmation threshold property,
 ConfirmationThreshold, and R specified in
 the deletion threshold property,
 DeletionThreshold.
 For 'Score' track logic, a 1-by-2 numerical
 array in the form: [currentScore,
 maxScore]. |
| IsCoasted | True if the track has been updated without a
 detection. In this case, tracks are predicted to the
 current time. |
| ObjectClassID | An integer value representing the target
 classification. Zero is reserved for an "unknown"
 class. |
| ObjectAttributes | A cell array of cells. Each cell captures the object
 attributes reported by the corresponding sensor. |

